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Operator dimensions and surface exponents for the non-linear 
Schrodinger model at T = 0 

A Berkovich and G Murthy 
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony 
Brook, NY 11794-3840, USA 

Received 11 April 1988 

Abstract. Using the Euler-Maclaurin formula, we compute finite-size corrections to the 
ground- and excited-state energies and momenta. This enables us to obtain all possible 
operator scaling dimensions at the critical point ( T = 0) and surface exponents for a variety 
of boundary conditions. We extend the predictions of conformal invariance to include 
Green functions with oscillating terms. 

1. Introduction 

Recently there has been a resurgence of interest in exactly integrable models. This 
interest is justified by two reasons. Firstly, some exactly intergrable models, like the 
Potts model, are of intrinsic interest in statistical mechanics. Secondly, they present 
us with patterns for the behaviour of other quantum field theories which can only be 
approached through approximations. 

In exactly integrable models, it is generally true that the spectrum is far easier to 
obtain than the correlation functions. The Bose gas with pairwise repulsive delta 
function interaction (also called the non-linear Schrodinger, or NLS, model) is no 
exception. It is defined by the second quantised Hamiltonian: 

fi = JoL dx ( 4J + ( x ) 4 ( x 1 + g4J + ( x ) 4 + ( x 1 4J ( x ) 9 ( x ) - CLO #J + ( x 1 4 ( x 1 1 (1.1) 

where po is the chemical potential and g > 0 is the strength of the repulsive interaction. 
Using the Bethe ansatz [ 11, Lieb and Liniger [2] obtained the spectrum in the thermo- 
dynamic limit. They also obtained the many-body wavefunction exactly. In principle, 
all the information about particle correlations is contained in the wavefunction. The 
difficulty arises because the wavefunction is a sum of N !  terms (for N particles) and 
correlation functions typically involve ( N ! ) ’ ( N  - 1) integrals, of which many are 
destined to cancel. Substantial progress in calculating correlation functions was not 
made until the 1980s [3,4]. 

The structure of the general correlation functions in this model is still an open 
problem (see, however, [ 5 ] ) .  At T = 0, however, there is a major simplification. The 
correlation functions computed above show that the correlation length goes to infinity 
as T+O, signalling a second-order phase transition. Since this is a theory with 
short-ranged interactions and a linear dispersion law we expect it to show conformal 
invariance at this point. 

0305-4470/88/ 193703 + 19$02.50 0 1988 IOP Publishing Ltd 3703 
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Conformal invariance in two spacetime dimensions has proven to be a very powerful 
constraint on the structure of quantum field theories. This was an  idea first proposed 
by Polyakov [ 6 ] .  In their seminal work [7], Belavin et a1 (hereafter referred to as BPZ) 

investigated the consequences of conformal invariance. A key object in the theory is 
the stress tensor which can be decomposed into analytic and  antianalytic pieces at the 
scale-invariant point: 

(1.2) 

These can now be expanded in Laurent series and  the coefficients, which generate 
infinitesimal conformal transformations, obey the Virasoro algebra with central 
extension : 

T (  Z )  = TI 1 - T,, + 2i T,, T(Z) = T,, - T,,-2iT1,. 

The fields in the theory which transform in the simplest possible manner under 
conformal transformations (i.e. homogeneously) are called primary fields. All other 
fields can be constructed from them. The primary fields obey the following commuation 
relations with the Virasoro generators: 

Under finite conformal transformations 

z - ,  w ( z )  if-, *(i) 

(1.4) 

BPZ found that if the number of primary fields was to be finite then the central extension 
(also called the conformal anomaly) must be quantised: 

6 
m ( m + l )  

c = 1 -  

where m is rational. In this case the possible scaling dimensions are also restricted, 
given by the Kac formula [8] 

[ ( m  + 1 ) p  - mq12 - 1 
4m(m + 1)  (1.7) 4 . q  = 

Following this up, Friedan et a1 [9] found that unitarity restricts the value of m to 
be an  integer greater than 2 if c < 1 .  For c 3 1 there is no restriction. 
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It is possible to extend the definition of a primary conformal field to include 
oscillations in the Green functions. This new primary field obeys the commutation 
relations with the following generators: 

[ L , ,  4 q ( z ,  Z ) ] = z n " ( a 4 / a z + i q 4 ) + ( n + l ) A z " 4  

[L,, d q ( z ,  z ) ]  = r n " ( a ~ / a Z + i q 4 ) + ( n + l ) ~ Z n ~ .  
(1.8) 

The two-point correlator of a 'scalar' field defined as 

is 

cos[2q Re( z1 - z 2 ) ]  
( z l  - Z 2 ) ' y Z 1  - Z * ) A '  P q ( Z 1 ,  f 1 ) @ q ( z 2 , Z 2 ) ) =  (1.10) 

It is interesting to note that this is the most general definition of a primary field 
consistent with translation invariance of the Green functions. It should also be noted 
that exp(iq Re(z))& (z )  behaves like a conventional primary field. 

Subsequently, it was discovered [ 101 that finite-size corrections are also restricted 
by conformal invariance. Specifically, it was shown that the finite-size corrections to 
the ground-state energy behave like 

T C V ,  

6 L  
Eg( L) = Le, - -+ . . . (1.11) 

for periodic boundary conditions. Xere U, is the velocity of sound in the model. Also 
for each operator 0, with anomalous dimension x, and spin s, there exists a tower 
of excited states with energies and momenta 

2 T V ,  

L 
E I j .  = Eg( L )  + - (x, + j + j ' )  

2T 
L 

P;jt = - (sa + j - j '  ) (1.12) 

where j and j '  are integers. 
This presents an alternate way of approaching the problem of correlation functions 

in exactly soluble models. Knowing the scaling dimension and spin of an operator 
corresponds to knowing the asymptotic behaviour of its two-point correlation. Thus, 
finite-size corrections offer a partial solution to the problem of correlation functions 
at the critical point. 

Finite-size corrections to a number of problems have been obtained by different 
methods [ 111. The one that we will be using makes crucial use of the Euler-Maclaurin 
formula: 

( n l ) )  (1.13) B2 Cf( n )  = [ l f ( x )  dx + ;(j( n , )  +f( n2 + C < ( f " " " ( n 2 )  -f""-" 
"I  I 2 P .  

where Bzp are the Bernoulli numbers and assuming, of course, that all the derivatives 
exist. This method was pioneered by Woynarovich and Eckle [12]. 

This paper is organised as follows. In § 2 we give a brief review of the thermo- 
dynamics of the non-linear Schrodinger model. Section 3 describes the actual computa- 
tion of the finite-size corrections and main results for the case of periodic and twisted 
boundary conditions. In 0 4 we demonstrate the integrability of a class of reflecting 
wall boundary conditions. Section 5 is devoted to obtaining the surface critical 
exponents for these boundary conditions. We end with a summary and conclusions. 

" 2  
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2. The thermodynamics of the NLS 

There are several ways of deriving the thermodynamic behaviour of the repulsive Bose 
gas. In this section we will follow the most obvious route, starting from the many-body 
Schrodinger equation in first-quantised notation 

where N is the number of particles. We solve this equation using the Bethe ansatz: 

in the fundamental domain x1 < x 2 < .  . . . < x N  where P denotes a permutation. The 
wavefunction in any other domain is related to this by Bose symmetry. 

It turns out that one can satisfy the Schrodinger equation with 

Assuming periodic boundary conditions for this section (boundary conditions do 

( 2 . 4 )  

This immediately leads to a system of transcendental equations to be satisfied by { A j } :  

not alter the spectrum in the thermodynamic limit) we must impose 

+(O, x2, x3, . . . 9 x N )  = $ ( x Z ,  x 3 9 .  . . 9 L ) *  

Taking the logarithm with an appropriate choice of branch we get 
N 

where 

7r-2 tan-'(g/A) A > O  
A G O  - 7r + 2 tan-'( - g /  A ) 

@ ( A )  = ( 2 . 7 )  

where the nj are distinct integers (for N odd) or half-odd integers (for N even). The 
Aj  and hence the nj must be distinct if the wavefunction is to be normalisable. For 
the ground state the nj are consecutive integers or half-odd integers with -( N - 1 ) / 2  s 
n, s ( N - 1 ) / 2 .  

Continuing this equation to arbitrary values of A and n we get 

where 

z(Aj) = n j / L  

and the density of roots is 
(2.9) 

p ( A )  = dz/dA. (2 .10)  
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Taking the thermodynamic limit of this equation at constant density, i.e. N + CO, L +  00 

but N /  L = D (density) fixed we get 

Changing variables from z to A inside the integral we get 

A 1 '  -+-I @ ( A  - p )  d p p ( k )  = z. 
25r 25r -' 

q is akin to a Fermi momentum and is implicity defined by 

A (* D/2)  = *q. 

Differentiating equation ( 1  1) we have an integral equation for p ( A ) :  

(2.11) 

(2.12) 

(2.13) 

Unfortunately this equation cannot be solved in closed form. We can, however, 
introduce a formal inverse: 

f ( A ) - L l '  25r -' K ( A  - p ) f ( ~ ~ ) d p = [ ( l - R / 2 5 r ) f l ( A ) = g ( A )  

We can also expand M in a series in l / g :  

(2.15) 

(2.16) 

(2.17) 

Formal and series solutions for p ( A )  are 

p ( A )  =-+- M(A, p )  d p  =- 1 +-+-+--- 2q 4q2 8 q 3  2q ( q 2 + 3 A 2 ) + , . , ) ,  
25r "I' 25r -q 2T 7 5rg 5r2g2 5r3g3 35rg3 

(2.18) 

The energy density of the ground state is 

& = I '  ( A 2 - p o ) p ( A )  dA. 
-4 

(2.19) 

We can also consider particle and hole excitations at lApl  > q and lAhl  < q, respec- 
tively, with dressed energies 

& ( A )  = [ ( I  + f i ) ( A '  - P O ) ]  

P ( A  1 = [ ( I  + f i ) ( A  )I. 

(2.20) 
and momenta 

(2.21) 
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From the above we can define the velocity of sound, which is the velocity of massless 
excitations following a linear dispersion law at the Fermi surface: 

2q + 2 A M ( &  q )  dA =- (2.22) :;:;;lA=q= 2.np(q) 
This will be important to us in the following. 

3. The finite-size corrections for periodic and twisted boundary conditions 

Let us analyse in more detail the finite-size corrections in the case of periodic boundary 
conditions. The system of transcendental equations satisfied by the roots is 

(3.1) 

Taking the logarithm with a suitable choice of branch we obtain, as before, 

AJL @ ( A J  - A k )  = 2.nnJ. (3.2) 
k 

We will analyse excitations above the ground state which have zero energy in the 
thermodynamic limit. It is these states which are important for computing the 
asymptotic behaviour of correlation functions. The ground state for N particles is 
characterised by consecutive integers (or half-odd integers) nJ lying in the range 
- ( N -  1 ) / 2 s  n, s ( N - l ) / 2 .  

We create the most general excited state as follows. 
( a )  We add r extra particles to get the ground-state configuration for N + r particles. 

This means that -( N + r - 1)/2 S nJ s ( N +  r - 1)/2. 
( b )  We shift all the integers (or half-odd integers) characterising the roots by an 

integer t. This means - ( N +  r -  1) /2+ t c n, s ( N +  r - 1)/2+ t. 
( c )  Finally, we create particle-hole excitations near * q  by removing bare particles 

from nh+ and putting it into np, .  These pairs are labelled by two integers, s,, the + 
and - indexing pairs at *q,  respectively, 

+ t - " , ( s + )  

+ t +  n + ( s + )  

N+r-1  
2 

N + r - 1  
2 

nh+ = 

np+ = 

N + r - 1  
2 

N + r - 1  
2 

nh- = - + t + m - ( s - )  

+ t - n - ( s - ) .  np-  = - 

(3.3) 

One can now write the system of the transcendental equations for the roots as 

(3.4) 
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We now use the Euler-Maclaurin formula to convert the sum into an integral and 
replace Aj by A L ( z ) .  We also make the ansatz 

(3.5) 

where A ( z ) (  = A ,  ( z ) )  is the function obtained in the limit L + CO. This ansatz is justified 
by self-consistency. It must also be noted at this point that the functions that appear 
naturally in this model are all analytic [ 2 ] .  This means that we can take the Euler- 
Maclaurin series as far as we want. We now separate powers of 1/15 to get integral 
equations for p ( A ) g l ( A )  and p ( A ) g z ( A ) :  

(3.6) 

One can now use the formal inverse to ‘solve’ these integral equations and we get 
where P ( A )  = dz/dA, g i , A A )  = g l , 2 ( z ( A m ) ) .  

p g , ( A )  = ; & ( A ) +  t 9 ( A )  

where 

We now proceed to find the energy and momentum of the excited state. We start 
with 
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We apply the Euler-Maclaurin formula, keep terms up to 1/L, substitute for p g , ( h )  
and p g Z ( h )  and use the expression for U,, equation (2.22), to get 

(3.9) 

t 2  

6L L 5 -  

E = Le,--+- r 2 x p + 4 x , + ~ ( m + + n + ) + E ( m + n )  

(m++ n,) -E (m-+ n-) 

where 

xp = a[ 1 + %( q)]’ = uS/47rD. (3.10) 

Also, e ,  is the energy density in the thermodynamic limit. This model has c = 1 and 
is clearly in the universality class of the Gaussian model [13]. The mapping between 
the coupling constant K of the Gaussian model and g is given by 

xp(g)  = 1 / 4 ~ K .  (3.11) 

Let us consider an excitation which has particle-hole pairs near +q only. Calling 
Z,+ ( m + ( s + )  + n+(s+)) = j we have 

2.77 
L P = 27rtD + - L (2rt + j )  (3.12) 

where E ,  is the ground-state energy. For large j the dispersion law for this excitation 
is 

E , -E ,=u , (P , -~T~D) .  (3.13) 

This is indeed a linear dispersion law but it differs from the standard case in being 
displaced by 27rrD in the momentum. This shift is precisely what causes oscillating 
terms to appear in the correlation functions. To show this let us turn to the spectral 
representation of the current-current correlator at equal time. The current, expressed 
as c#J+(x)c$(x) = j ( x ) ,  has r = O  but couples to all t and j, j ’ :  

(J(x)J(o)) = C (olJ(x)Im)(mlJ(o)IO) = Cl(olJ(o)lm)12 exp[i(p, -p,)xI (3.14) 

where the sum is over all states Im) and p m  and p ,  are the momenta of states Im) and 
IO). We now break up this sum into disjoint sums characterised by different t and 
therefore different macroscopic momenta. Schematically, we have 

m m 

where A(t, j ,  j‘) gives the multiplicity of the ‘state’ t ,  j , j’ .  It is the second sum that 
gives the power law decays for x<< L. The oscillating factors exp[i(27rD)t] still remain 
and will give oscillating contributions to the correlation function. 

It might be argued that the theory is not conformal even at long distances due to 
the presence of oscillating terms in the Green functions. The use of conformal theory 
results is justified by two reasons. Firstly, the predictions of conformal finite-size 
scaling are verified by the comparison with the exact known results at T = 0 [ 141 of 
the current-current correlator. 

Secondly, it is possible to have field theoretic representations of the conformal 
algebra in which some fields have oscillating Green functions. In this case, the primary 
fields of dimension ( A ,  A) and momentum 2q transform according to equations (1.8)- 
(1.10). 
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Thus, there is no contradiction in using the results of conformal theory to obtain 
scaling dimensions in this model. We can now write down the general asymptotic (in 
distance) series for the field-field and current-current correlators: 

(3.16) 

(3.17) 

We extend the conformal hypothesis to the case of twisted boundary conditions 
for which no exact results are known. 

Before we move on to twisted boundary conditions it should be noted that it is 
straightforward, though tedious, to extend the above analysis to higher-order correc- 
tions. These corrections embody information about irrelevant operators in the critical 
Hamiltonian and about some coefficients in the operator product expansion [ 151: 

For example, there are three irrelevant operators Oi of dimension 3 in the Hamiltonian. 
All these considerations are easy to generalise to the case of twisted boundary 

conditions. Here the system in transcendental equations is 

(3.19) 

where p is a real number lying between -4 and f. The equations are formally identical 
to an excited state of the system with periodic boundary conditions with t replaced 
by r+p .  

The results are as follows. The general excited-state energy and momentum are 
given by 

(3.20) 

(3.21) 

Several points are noteworthy here. The vacuum (the lowest energy state) has a 
macroscopic momentum (27rpD). Operator dimensions and spin in the bulk depend 
upon p :  

(3.22) 

Finally, the value of the conformal anomaly changes to 

c = 1 - 12p2/4xP. (3.23) 
We now go on to the analysis of reflecting wall boundary conditions. 

4. Algebraic Bethe ansatz for reflecting wall boundary conditions 

In this section we will derive Bethe ansatz equations for the NLS model with non-periodic 
boundary conditions, which are compatible with exact integrability. 
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Consider the Hamiltonian 

where the boundary terms in ( 1 )  correspond to the following boundary problem for 
the wavefunction & ( x l , .  . . , x N )  in the N-particle sector: 

N. (4.2) 

Although this problem can be solved by means of the explicit coordinate Bethe 
ansatz construction of the wavefunction (see, for example [ 1611, here instead we will 
use the modern technique, based on the quantum inverse scattering method ( Q I S M )  

[ 171, which reduces the Bethe ansatz to elegant operator algebra. This technique, also 
known as the algebraic Bethe ansatz, was generalised recently by Sklyanin [ 181 to 
incorporate the non-periodic boundary conditions (4.2). Central to the QISM is the 
auxiliary linear equation 

= : L( A, x) T (  A, x): aT(A, x) 
ax 

(4.3) 

where A is a complex spectral parameter and  T(A,  x )  and  L(A, x )  are 2 x 2 matrices 
of operator fields. In particular, for the NLS model, 

It is often useful to consider a lattice approximation to the field and  the auxiliary 
equation. With the replacements 

x + n d  (4.6) 
equation (4.3) assumes the form 

T,,,(A) =:L, (A)T , (A): .  (4.7) 
It is easy to construct the solution of (6) on the interval ( - N ,  + N )  

Complete integrability of this and related models is guaranteed by the so-called 
Yang-Baxter relations satisfied by the local matrices L,(A) [17]. In the NLS model 
these identities take the form: 

R(A - p ) G ( A ) L ;  ( p )  = L?,(p)LL(A ) R ( A  - p )  (4.9) 

where L!, = L, 0 ZL2; L; = ZLl 0 L, and the 4 x 4 matrix R ( A )  is given by 

A-ig 0 0 0 

R ( A )  = A -ig$ = 

A -ig 

(4.10) 
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Here, f i  is the permutation operator in VI@ V2. It is trivial to verify that solution (4.8) 
satisfies its own Yang-Baxter relations, namely 

R ( A  - P ) T ~ N ( A ) T Z N ( C L ) =  C(P)T~N(A)R(A -d. (4.11) 

In the case of periodic boundary conditions, one can make use of (4.11) to show that 
T ( A ) ,  as defined as 

T(A)=tr T N ( A )  = A N ( A ) + D N ( A )  (4.12) 

is the generator of mutually commuting conserved quantities, one of which is the 
Hamiltonian ( 1 . I)  and BN ( A  ) and CN ( A  ) operators are creation and destruction 
operators, correspondingly [ 171. To generalise this construction in order to describe 
the Hamiltonian (4.1), which contains non-trival boundary terms, let us introduce two 
new matrices K+(A)  and K-(A) ,  defined by the given R matrix (4.10) and the Sklyanin 
relations [ 181: 

R ( A 1 2 ) K ~ ( A l ) R ( ~ 1 2 + i g ) K ~ ( A 2 )  = K ~ ( A 2 ) R ( ~ , 2 + i g ) K ! ( A l ) R ( A , 2 )  (4.13) 

R ( - A , 2 ) K y l ( A , ) R (  -Il2 + ig)K:’l( A 2 )  

= K:”(A2)R( - i I2+ ig )K~2(A, )R( -Al2 )  (4.14) 

where 

and the symbol t i  stands for the transposition in the space Vi. It can be easily shown 
by inspection that 

K,(A) = it* + i a , ( A  Ti ig)  (4.16) 

are indeed the solutions to equations (4.13) and (4.14). Introducing U ( A ) ,  defined as 

(4.17) 

and making use of equations (4.11) and (4.13) one can prove that U ( A )  also satisfies 
the Sklyanin relations: 

R ( A 1 2 ) ~ 1 ( ~ l ) R ( ~ 1 2 + i g )  U 2 ( A , )  = U2(A2)R(~12+ig)UL(AI)R(A12) .  (4.18) 

Consider now the new object ? ( A )  

t(A)=Tr{K+(A)U(A)}. 

With the help of easily verifiable identities for the R matrix 

R ( A  ) R (  -A ) = - ( A  * + g 2 )  R ‘ I ( A )  = R‘2(A) 

R ‘ [ ( A ) R ‘ l ( - A  +2ig) = -A(h  -2ig) 

and relations (4.14) and (4.18), one can get 

[ t ( A l ) ,  t (A2)1=0 .  

(4.19) 

(4.20) 

(4.21) 
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Thus, t ( A )  is the generating function of the infinite set of mutually commuting quantities. 
These quantities are also conserved, since the Hamiltonian (4.1) is one of them (with 
a* = 5*+tg) .  

To find eigenvectors of t (  A ) 

t ( A )  = ( i & + + A  -$g)A(A)+(i(+-A+$g)fi(A) 

2A -ig 1 -- - ( i a +  + A ) & A  ) +- ( i a+  - A)G( A )  
2A 2A 

(4.22) 

where 

6 ( A )  = 2Ad(A) + igA(A) (4.23) 

and therefore eigenvectors of the Hamiltonian (4.1), we will need commutation relations 
between various operator-valued entries of the U ( A )  matrix. Making use of equation 
(4.18) and the definition (4.17), one obtains 

(4.24) 

(4.25) 

Formulae (4.24) and (4.25) suggest that E(A) is the creation operator. Let us introduce 
the reference state IO), defined as 

$(x)lO) = c(A)lO) = 0. (4.26) 

Then one can show that IO) is the eigenvector of the operators A(A) and G(A): 
A ( A ) l O )  = ( A  +ia-) exp(-iAL)lO) = a(A) lO)  

9 ( A  ) 10) = ( 2A + ig ) ( i a - - A ) exp( i A L )  10) = d ( A ) IO). 
(4.27) 

(4.28) 

(4.29) 
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(4.30) 

if the pairwise distinct numbers {A,} satisfy the following system of Bethe ansatz 
equations: 

(A ,+ ia+)  (A,+iu-) A +ig i , + i g  
( A t - i a + )  ( A , - ~ c Y - ) , = I  A,-ig i v - i g '  

exp(i2A, L) = n L  
J # 1  

(4.31) 

A proof can be constructed in a manner similar to that of the case of periodic boundary 
conditions [17] and makes use only of commutation relations (4.24) and (4.25) and 
formulae (4.27). 

Since particle number ( A )  and Hamiltonian (8) operators belong to the infinite 
set of commuting conserved quantities, generated by t ( A o ) ,  we have 

N 
g4({AZ})= A; 4({AJ})* (4.32) 

It should be noted that in the case of boundary conditions (4.2) the momentum operator 
k does not belong to the set of conserved quantities, in contrast to the case of periodic 
and twisted boundary conditions. This is quite natural, since in the presence of reflecting 
walls the transitional invariance is irretrievably lost. 

Finally, returning to equation (4.31), we observe that this equation is symmetric 
under replacement A, + -AJ. To avoid the problem of double counting, we will assume 
below that all Bethe ansatz roots are positive. 

J = 1  
A4({A,)) = N4({AJ}) 

5. The finite-size corrections for reflecting wall boundary conditions 

In this section, we will consider the finite-size corrections to the spectrum of the system, 
given by the Hamiltonian (3.1) and will determine all surface critical exponents. Taking 
the logarithm of (4.31), we have 

N 

~ A , L +  e + ( A , ) +  @ - ( A , ) +  C [ @ ( A , ) +  e&)] =27rnl (5.1) 
J = 1  
J # 1  

where @ , ( A )  is defined as 8(A) with g replaced by CY,, and integers Ini} belong to a 
set of unequal positive integers greater than zero. 

One can rewrite (4.1) in a form similar to that of 2 N +  1 particles in a box of length 
2L with some extra terms: 

AI 1 1 N  n 
-+- [ e+ ( /+ , )  + 8-(A,) - 8(A,) - e(zA,)] +- c e ( & )  = 2, 
T 2TL 27rL,=-N L 

In the last formula, we extended the limits of summation using the convention 
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A-,  = -A,, n-, = - n , .  The ground state is characterised by the set of consecutive integers 
j :  

- N C j C N .  (5.3) 

N + N + r  (5.4) 
With the replacement 

one obtains Bethe ansatz equations for the ground state in the r-particle sector: 

- ( N  + r )  is  ( N  + r ) .  

Once again, let us define the new variable z ( A L )  as 

( 5 . 5 )  

Obviously, for A L  = A, ,  

Z (  A L  = A ,  ) = i/ L. (5.7) 

Applying the Euler-Maclaurin formula (1 .13 )  to the sum on the RHS of the last equalion 
and keeping terms up to order 1/L2,  one obtains 

= Z  ( 5 . 8 )  

z ,  = N /  L. ( 5 . 9 )  

where we introduced z,: 

Expanding A L  around ft, and making the following ansatz for A L ( z ) :  

we find 
( l - g ) P x = ;  1 

(5.10) 

( 5 . 1 1 )  

(5.13) 
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where 

(5.14) 

9 = A x (  z m  1 (5.15) 

To obtain the finite-size corrections to the energy, we start with the exact expression 
and operators k and M were defined previously by formulae (2.14) and (2.15). 

N + r  

EL,= Aj-FLo(N+r )  
J - 1  

(5.16) 

where the A, are subject to the constraint (4.31). Performing manipulations similar to 
those described above, we get with the help of (5.1 1)-(5.13) 

7 r V  
E ;, = Le, +f+ { [ E  ( 9 )  + 2( r + 1 )x: 2 ] 2  -A} (5.17) 

2 L  

where 

+ 4  

f = i q 2 + [  h ( ~ ( h ) - y ( A ) )  dA 
-4  

l+lii 
& ( A )  =- [ 8(2A) + e(  A )  - B + ( A )  - &(A)]  

27r 

For the ground-state energy ( r  = 0), we have 

7 r V  
~ e , + f + -  { [ E ( q )  + X ~ ’ ~ I ~  -3. 

2L 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

The second term in the RHS of the last equation is the surface energy term and can be 
shown to be different from the one obtained in [16]. 

The most general excited state can be produced, by creating particle-hole pairs, 
labelled by an integer s, in the r-particle sector. Let p ( s )  and h ( s )  be positions of 
particles and holes, correspondingly. Then, the energy of this state up to order 1/ L is 

(5.23) 

In the presence of the boundary, conformal transformations must be restricted to those 
that leave the surface invariant. Conformally transforming the strip of size L into the 
upper half-plane (Im z 3 O ) ,  we conclude that for the boundary conditions (4.2) 
with? 

cl+ = -a-l (5.24) 

+ Note that boundary conditions (5 .24)  include free and fixed boundary conditions as a special case. 
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these transformations must map the upper half-plane into itself. Making use of the 
formula [lo] 

(5.25) X V  
E,,(L) = L e , + f - L  c 

24 L 

and equation (5.22), one might conclude at first glance that c is given by 

c = 1 - 12[ E ( q ) + X ; y l 2  < 1. (5.26) 

However this conclusion is obviously in direct contradiction with the Hermiticity of 
the Hamiltonian (4.1). 

This paradox can be explained if we regard the ground state as a defected vacuum 
of the theory. Indeed, we can minimise the energy still further, subtracting a fractional 
number of particles rot: 

(5.27) 

This situation is somewhat analogous to that of the X X Z  chain on an odd number of 
sites where the defected ground state contains half of a particle (kink). 

If we now switch to the true vacuum, we readily derive for the conformal anomaly 

c =  1. (5.28) 

We now turn to the surface exponents of the model. Associated with the lowest energy 
ELr in each r-particle sector we have the surface exponent XI, which may be estimated 
from the following formula [ 191: 

x: = ( ELr - Eir )  L/ X U , .  (5.29) 

With the help of formulae (5.17) and (5.29) we will obtain 

x i  = 2( r + ro)2x, - 2r:x,. (5.30) 

Thus, we see that all surface exponents are corrected by the presence of the ro particles 
in the ground state. Because the surface breaks translational invariance, correlation 
functions have a more complicated dependence than in the bulk. However, at the bulk 
critical point, the one-point function of a scaling operator 4, is restricted by the scaling 
and translational invariance along the real axis to the form [20]: 

( 4 , ( y ) ) = A / y x i  (5.31) 

where y is the distance measured from the surface and x, is the bulk scaling dimension 
of 4,. In particular, for the current operator + ' ( y )+ (y )  we have 

where use of equation (1.8) was made. 

(5.32) 

t Formula ( 5 . 2 5 )  holds true for conformally invariant theories, where the interpretation of the spectrum in 
terms of particles may be inconsistent. 
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The two-point correlation function ( 4 i ~ l )  in the surface geometry is constrained 
by the small conformal group to the form [ 2 1 ]  

( t 2  - t l  ) 2 +  Y :  + Y :  
X =  

YlY2 

and 4(x) is some undetermined function, which falls off like x 
x + m .  If y l  is located near the boundary, i.e. 

Y I Z  l l q  

l / q < <  y,<< L 

and 

l / q < <  t 2 < <  L 

then one can obtain 

( 5 . 3 3 )  

(5 .34)  

as its argument 

(5 .35)  

(5 .36)  

(5 .37)  

The field operator $ ( y ,  t )  is associated with the ground state in the one-particle sector 

x* = x p  x $ = 2 ( 2 r , , + 1 ) x , .  (5 .38)  

Making use of (4 .37)  and ( 4 . 3 8 ) ,  we finally have for the two-point field correlator 

( 5 . 3 9 )  

The last expression is valid for the class of boundary conditions ( 4 . 2 )  and (5 .24)  and 
shows no dependence on a. 

In the infinite coupling limit g + m  the two-point field correlator becomes par- 
ticularly simple: 

( 5 . 4 0 )  

We hope to verify this prediction of conformal invariance by exact calculations in 
future publications. 

Y3’4 
lim < cL+(Y, t)Clr(O, 0))- ( y 2 -  & 2 ) ’  
g - x  

6. Summary and conclusions 

Let us briefly summarise the main new results. All exactly integrable models for which 
finite-size corrections have been obtained in the past have possessed inversion formulae, 
giving the density of Bethe ansatz roots p ( A )  as an explicit function of A. We have 
extended the technique to a situation where it is impossible to obtain p ( A )  in closed 
form. 

We have obtained the surface energy for the case of reflecting wall boundary 
conditions. In particular, we correct a previous calculation [ 1 6 ]  for the special case 
of fixed boundary conditions. 
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We have extended standard predictions of conformal invariance to include oscillat- 
ing terms in the Green functions. 

Known exact results have been previously confined to a few operators only [14]. 
We have obtained all possible operator scaling dimensions, which indicate that the 
NLS model belongs to the Gaussian model universality class. This result is consistent 
with the analysis of the X X Z  model [22]. There is, however, an important distinction. 
In the latter case vortex excitations correspond to the string configurations of Bethe 
ansatz roots, while for the NLS model they are created by the shift of the Fermi band 
as a whole. The results obtained in this paper for twisted and reflecting wall boundary 
conditions are completely new. It is important to point out that twist (unlike reflecting 
walls) affects bulk critical behaviour. 

Let us further note that, since the scaling dimensions obtained in this paper are 
known exactly for all values of the coupling constant g, our results offer the possibility 
of systematically resumming 1/ g expansions for the long-distance behaviour of the 
Green functions. 

The technique we have used can be extended systematically to obtain all higher- 
order corrections. These give us information about coefficients in the operator product 
expansion and irrelevant operators in the critical Hamiltonian. In the NLS model all 
the higher-order corrections are integer powers of L and the critical Hamiltonian is 
not spinless with respect to the fixed-point Hamiltonian as is usually the case. 

Acknowledgments 

The authors would like to thank Professor B M McCoy and Professor J H H Perk for 
useful discussions. This paper was partially supported by the National Science Founda- 
tion grant no 85-07627. 

References 

[ l ]  Bethe H 1931 Z. Phys. 71 205 
[2] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605, 1616 
[3] Creamer D B, Thacker H B and Wilkinson D 1980 Phys. Reo. D 21 1523 
[4] Korepin V E 1984 Commun. Math. Phvs. 94 93 
[5] Korepin V E 1987 Commun. Math. Phys. 113 177 
[6] Polyakov A M 1970 JETP Lett. 12 381; 1974 JETP Lett. 39 10 
[7] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333 
[8] Kac V G 1979 Group Theoretical Methods in Physics (Lecture Notes in Physics 94) ed W Beiglbock and 

[9] Friedan D, Qiu Z and Shenker S H 1984 Phyr. Rev. Lett. 52 1575 
A Bohm (Berlin: Springer) p 441 

[ lo]  Cardy J L 1984 J.  Phys. A :  Math. Gen. 17 L385 
Blote H W, Cardy J L and Nightingale M P 1986 Phys. Rev. Lett. 56 742 
Affleck I 1986 Phys. Reo. Lett. 56 746 

Avdeev L V and Dorfel B D 1986 J. Phys. A: Marh. Gen.  19 L13 
deVega H J and Woynarovich F 1985 Nucl. Phys. B 251 [FS13] 439 

[12] Woynarovich F and Eckle H P 1987 J. Phys. A :  Marh. Gen.  20 L97 
[13] Kadanoff L 1979 Ann. Phys., N Y  120 39 
[14] Bogoliubov N M, Izergin A G and Korepin V E 1986 Nucl. Phyr. B 275 [FS17] 687 
[15] Cardy J L 1986 Nucl. Phys. B 270 [FS16] 186 
[16] Gaudin M 1971 Phys. Rer. A 4 386 

[ l l ]  Hamer C J 1986 J. Phys. A :  Math. Gen. 19 3335 



Operator dimensions and surface exponents 3721 

[17] Faddeev L D 1984 Les Houches Lecfures 1982 ed J B Zuber and R Stora (Amsterdam: North-Holland) 

[I81 Sklyanin E K 1987 Proc. 8rh Inf. Congr. on Mafhemafical Physics ed M Melkhout and R Senior  

[19] Binder K 1983 Phase Transifions and Crifical Phenomena vol 8, ed C Domb and J L Lebowitz (New 

Cardy J L 1984 Phase Transitions and Crifical Phenomena vol 11, ed C Domb and J L Lebowitz (New 

p p  561-608 

(Singapore: World Scientific) pp 402-8 

York: Academic) pp 1-45 

York: Academic) pp 55-126 
[20] Fisher M E and de Gennes P G 1978 C. R.  Acad. Sci., Paris B 287 207 
[21] Cardy J L 1984 Nucl. Phys. B 240 [FSlZ] 514 
[22] Alcaraz F C, Barber M N and Batchelor M T 1987 Phys. Ret.. Leu. 58 771 


